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Canonical Quantization

* Consider Einstein-Hilbert action

S = Sgrafu + Sboundary

[ e [Boa] - [ e

ansatz: (closed) FLRW metric

ds®* = —N(t)%dt* + a(t)*dX?

. 9
S — 272 / dt (3":; +3Na— Na3A)
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* Treat this as quantum mechanical system with coordinates a and N

* The lapse function N represents gauge freedom which leads to a constraint
equation

p2

- 24m2q

where p is the momentum conjugate to a

0 L H = — 67m%a + 21%a3A

[4,5]

* Quantum theory: constraint on physical states

HY =0 Wheeler-DeWitt (WDW) equation
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Solutions to the Wheeler-DeWitt equation

Classical de Sitter space
ds® = —dt* + a(t)*dQ?

3
a(t) = Lgscosh(t/lys) ; Llas = T

G,Zfd,g:

>
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Wheeler-DeWitt equation
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Looks like ‘Schrédinger equation’
for particle in a potential [2,3]
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* Imagine universe ,tunnelling” through the potential barrier. Wave function
picks up a factor of

l
T =exp | £ ” da \/1447r4 V(a) = exp [ £ 127 + : Hartle-Hawking (HH) solution
0 A - : Linde-Vilenkin (LV) solution

The sign difference is crucial since it tells us which values of the vacuum
energy (cosmological constant, scalar potential, ...) are more likely

Airy functions as solutions to the WDW-equation

* Choosing a different operator ordering when LN —
quantizing, one can solve WDW equation exactely o ]|\ == =i
U =c1Ai(z) + c2Bi(2) [2,3] g bes. //\ /\ /\ //\
4)1/3 ] _ZZ: i \ \
e S IRBSVAVA'A
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Path Integral Approach

* Consider the propagator for transitions between initial and final state -
setting the initial scale factor to zero gives the wave function

f
G=Gi~ )= [ Dy s i= (@) — f=(a)

* This integral can be simplified to an ordinary, one-dimensional integral over
the lapse [7]

[ 3im dN .
G — _/ v iSo
2 Jeo \/Ne
AZPP 1 3
8 = 972 ( + N (3 — EA(QO + Q1)) - W(Ql - QO)2)
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* Connection to Canonical Quantization: One can show that this propagator
satisfies the Wheeler-DeWitt equation if one integrates over the whole real
lapse line. [9]

This leads to two possibilites:

Im(N)
Im(N)
G

Re(N) RekN)
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* The integrals can be analyzed with Picard-Lefschetz theory, deforming the
contours to (complex) steepest-descent contours along which the integrand

does not oscillate but decay exponentially [8]

Complex N-plane (g1 > £%)

Complex N-plane (g1 < £%)

Im(N)
Im(N)

Re(N) Re(N)

* The integral can be approximated by its behaviour around the saddle points

* Conclusions:
* Both contour choices lead to a convergent integral
* Closing the contour from above gives a LV wave function ¥y, closing the contour from

below gives a HH wave function Wy
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Exact Solutions to the Path Integral

* Idea: If the Path Integral is too complicated to solve, evaluate it at special
values and ‘match’ the result to the known solutions of the WDW equation [10]

* One finds exact solutions to the path integral in terms of Airy functions

5/394/332/3
Vrv(e) = —— g3 —Ai(2(0))Ai(2(q))
75/391/332/3
Vrn(q) = i—— g5 (Ai(2(0))Bi(2(q)) + Ai(2(q)) Bi(2(0)))

12774)1/3
2(q) = (AT/)E,(Q))—AQL qg=a

Both are valid candidates for the wave function of the universe
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LV wave function HH wave function
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* Unlike W, , Wy is independent of A for small scale factors. This is an
argument in favour of the Hartle-Hawking wave function because the
cosmological constant should be negligible for small universes
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Summary

* The wave function can be calculated from both the Wheeler-DeWitt equation
and the path integral

« With an appropriate choice of integration contour for the lapse, the path
integral satisfies the WDW equation

* The wave functions obtained is this way are of LV or HH type, depending on
the contour

* While the wave functions both have their advantages, W, has the unique
feature of being independent of A for small scale factors
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